• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.1(45), 2021
    40-48

    Development the model of a resource and management of the technical condition of an asynchronous traction motor of an electric rolling stock

    The analysis of the influence of operating modes and the development of the residual life, expressed through thermal wear of the insulation of the asynchronous traction motor. The research subject is to obtain new patterns of change in the residual life of the stator winding insulation, which make it possible to determine the specific life of the winding for each mode of the asynchronous traction motor. The research aim is to create a system for determining and assessing the residual life by developing methods and technical means of monitoring and comprehensive diagnostics, as well as theoretical justification using the method for determining additional thermal wear of the stator winding insulation, taking into account the combined effect of the starting transient process, the long-term allowable load schedule and the maximum allowable temperature values. To determine and assess the possible residual life, the method of sequential influence of starting transients, maximum permissible load curves, as well as long-term overloads at the maximum permissible temperature, taking place under various operating factors during the movement of electric rolling stock, was used. The expediency of determining the function of uneven resource development, which has a monotonic character and is approximated by a linear double exponential and exponential functions, is shown. Specific proportionality coefficients are experimentally determined, which characterize the decrease in the dielectric strength of the insulation with sequential alternation of maximum and long-term permissible loads and maximum permissible temperature values, followed by obtaining an analytical relationship that predetermines the insulation resource. It is shown that the determination and assessment of the residual resource under typical modes practically makes it possible to clarify the timing of preventive measures and predict the expected duration of accident-free operation and forestall the premature failure of the asynchronous traction motor.
  • V.3(31), 2017
    43-54

    Ways to improve energy efficiency passenger locomotives when operating on the plains railways

    Electricity consumption for traction depends on a number of operational parameters, including the use of power of electric rolling stock. On Russian Railways there are flat areas of great extent, which operated the locomotives inefficient use of power and work modes with low energy performance. The aim of this work is to examine ways to improve the energy efficiency of passenger locomotives, such as the operation of electric rolling stock with rational values of power and number of axes for the modern passenger transport on the flat sections of the road long-haul and assess their energy performance. To achieve this goal was determined by the rational value of the power required for driving trains on this stretch of track with maximum speeds of 160 km/h, the calculations of the asynchronous traction motors obtained traction and power characteristics of electric locomotives with asynchronous traction drive, and a proposed comparison methodology, allowing to evaluate the difference of power consumption for traction of electric locomotives with asynchronous traction drive (with rational values of power and number of axes) currently operating a DC electric locomotive EP2K. On the basis of the conducted research it was concluded that there are reserves for improvement of energy efficiency of passenger locomotives on the flat sections of the road long-haul, such as operation of electric rolling stock with rational values of power and number of axes corresponding to the train weight, speed and track profile, which will significantly reduce the cost of electricity for traction of trains.
  • V.3(23), 2015
    53-62

    Methodology for assigning losses in two-element frequency converter in induction motor test rig

    Each of the proposed circuits is composed of inverters. These devices are sources of non-sinusoidal voltage, whose frequency can vary within a wide load range of the test engine. Therefore, to measure the power in such conditions requires either the use of special complex of hardware-software complexes to perform the direct measurement or the development of indirect methods for determining capacity. Such methods proposed for each of the schemes. The essence of the developed methods consists in a preliminary experimental determination of the dependency of the losses in the rectifiers and rectifier-inverters circuits from the power supplied to him. These dependencies are further processed during the test, using only the General-industrial electric meters that measure power consumed by the frequency Converter, and the power consumed (generated) asynchronous motors is determined by the indirect (calculated) by. On the other hand, pre-experimentally received dependence of losses in frequency converters from power consumption trolled (generated) asynchronous motor energy, you can calculate the power consumed by the frequency Converter from the network in a wide range of loads that can be used in the design of testing stations for asynchronous traction motors.
  • V.3(27), 2016
    58-66

    Energy efficient universal stand for load testing of asynchronous traction motors and dc motors

    The article presents a universal energy-efficient stand for load testing of asynchronous traction motors, and DC motors. It is proposed to use two options of schemes for testing of traction DC motors with serial excitation and asynchronous motors, and traction motors DC parallel (independent) excitation and asynchronous motors, each of which allows you to implement energy-efficient test method - the method of mutual loading. Given the advantages of the use of the proposed stand. The calculation of the main parameters recorded during the test: currents, voltages and power are invited to perform with the help of mathematical models. Each of the mathematical models takes into account the work of the subjects of the asynchronous traction motors and traction motors DC series or parallel (independent) excitation) by the method of mutual loading: electrical and mechanical link. In conclusion, the article sets out the intended results from the implementation of energy-efficient universal stand for load testing of asynchronous traction motors, and DC motors.